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Introduction

• Text processing is the core business of internet companies today (Google, 
Facebook, Yahoo, …)

• Machine learning and natural language processing techniques are applied 
to big datasets to improve many tasks:
• search, ranking
• spam detection
• ads recommendation
• email categorization
• machine translation
• speech recognition
• …and many others
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Overview

Artificial neural networks are applied to many language problems:

• Unsupervised learning of word representations: word2vec

• Supervised text classification: fastText

• Language modeling: RNNLM

Beyond artificial neural networks:

• Learning of complex patterns

• Incremental learning

• Virtual environments for building AI
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Basic machine learning applied to NLP

• N-grams

• Bag-of-words representations

• Word classes

• Logistic regression

• Neural networks can extend (and improve) the above techniques and 
representations
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N-grams

• Standard approach to language modeling

• Task: compute probability of a sentence W

𝑃 𝑊 = ෑ

𝑖

𝑃(𝑤𝑖|𝑤1…𝑤𝑖−1)

• Often simplified to trigrams:

𝑃 𝑊 = ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−2…𝑤𝑖−1)

• For a good model: P(“this is a sentence”) > P(“sentence a is this”) > P(“dsfdsgdfgdasda”)
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N-grams: example

𝑃 "𝑡ℎ𝑖𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒" = 𝑃 𝑡ℎ𝑖𝑠 × 𝑃(𝑖𝑠|𝑡ℎ𝑖𝑠) × 𝑃 𝑎 𝑡ℎ𝑖𝑠, 𝑖𝑠 × 𝑃(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒|𝑖𝑠, 𝑎)

• The probabilities are estimated from counts using big text datasets:

𝑃 𝑎 𝑡ℎ𝑖𝑠, 𝑖𝑠 =
𝐶(𝑡ℎ𝑖𝑠 𝑖𝑠 𝑎)

𝐶(𝑡ℎ𝑖𝑠 𝑖𝑠)

• Smoothing is used to redistribute probability to unseen events (this avoids 
zero probabilities)

A Bit of Progress in Language Modeling (Goodman, 2001)
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One-hot representations

• Simple way how to encode discrete concepts, such as words

Example:
vocabulary = (Monday, Tuesday, is, a, today)

Monday  = [1 0 0 0 0]

Tuesday = [0 1 0 0 0]

is      = [0 0 1 0 0]

a = [0 0 0 1 0]

today   = [0 0 0 0 1]

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)

Neural Networks for NLP, Tomas Mikolov 7



Bag-of-words representations

• Sum of one-hot codes
• Ignores order of words
Example:
vocabulary = (Monday, Tuesday, is, a, today)

Monday Monday = [2 0 0 0 0]

today is a Monday  = [1 0 1 1 1]

today is a Tuesday = [0 1 1 1 1]

is a Monday today  = [1 0 1 1 1]

Can be extended to bag-of-N-grams to capture local ordering of words
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Word classes

• One of the most successful NLP concepts in practice

• Similar words should share parameter estimation, which leads to 
generalization

• Example:
𝐶𝑙𝑎𝑠𝑠1 = 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑

𝐶𝑙𝑎𝑠𝑠2 = (𝐼𝑡𝑎𝑙𝑦, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝐹𝑟𝑎𝑛𝑐𝑒, 𝑆𝑝𝑎𝑖𝑛)

• Usually, each vocabulary word is mapped to a single class (similar 
words share the same class)
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Word classes

• There are many ways how to compute the classes – usually, it is 
assumed that similar words appear in similar contexts

• Instead of using just counts of words for classification / language 
modeling tasks, we can use also counts of classes, which leads to 
generalization (better performance on novel data)

Class-based n-gram models of natural language (Brown, 1992)
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Basic machine learning overview

Main statistical tools for NLP:

• Count-based models: N-grams, bag-of-words

• Word classes

• Unsupervised dimensionality reduction: PCA

• Unsupervised clustering: K-means

• Supervised classification: logistic regression, SVMs
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Quick intro to neural networks

• Motivation

• Architecture of neural networks: neurons, layers, synapses

• Activation function

• Objective function

• Training: stochastic gradient descent, backpropagation, learning rate, 
regularization

• Intuitive explanation of “deep learning”
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Neural networks in NLP: motivation

• The main motivation is to simply come up with more precise 
techniques than using plain counting

• There is nothing that neural networks can do in NLP that the basic 
techniques completely fail at

• But: the victory in competitions goes to the best, thus few percent 
gain in accuracy counts!
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Neuron (perceptron)
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Neuron (perceptron)
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Neuron (perceptron)
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Neuron (perceptron)
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Activation function: max(0, value)

Neuron with non-linear activation function 
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Neuron (perceptron)
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Neuron with non-linear activation function 

Output (axon)
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Neuron (perceptron)
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Input synapses

w1

w2

w3

W: input weights
Activation function: max(0, value)
I: input signal

𝑂𝑢𝑡𝑝𝑢𝑡 = max(0, 𝐼 ∙ 𝑊)

Neuron with non-linear activation function 

Output (axon)

i1

i3

i2
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Neuron (perceptron)

• It should be noted that the perceptron model is quite different from 
the biological neurons (those communicate by sending spike signals 
at various frequencies)

• The learning in brains seems also quite different

• It would be better to think of artificial neural networks as non-linear 
projections of data (and not as a model of brain)

Neural Networks for NLP, Tomas Mikolov 20



Neural network layers
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Training: Backpropagation

• To train the network, we need to
compute gradient of the error

• The gradients are sent back using
the same weights that were used
in the forward pass

Simplified graphical representation:
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What training typically does not do

Choice of the hyper-parameters has to be done manually:

• Type of activation function

• Choice of architecture (how many hidden layers, their sizes)

• Learning rate, number of training epochs

• What features are presented at the input layer

• How to regularize

It may seem complicated at first, the best way to start is to re-use some 
existing setup and try your own modifications.
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Deep learning

• Deep model architecture is about having more computational steps 
(hidden layers) in the model

• Deep learning aims to learn patterns that cannot be learned 
efficiently with shallow models

• Example of function that is difficult to represent: parity function (N 
bits at input, output is 1 if the number of active input bits is odd) 
(Perceptrons, Minsky & Papert 1969)
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Deep learning

• Whenever we try to learn complex function that is a composition of 
simpler functions, it may be beneficial to use deep architecture
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Deep learning

• Deep learning is still an open research problem

• Many deep models have been proposed that do not learn anything else 
than a shallow (one hidden layer) model can learn: beware the hype!

• Not everything labeled “deep” is a successful example of deep learning
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Distributed representations of words

• Vector representation of words computed using neural networks

• Linguistic regularities in the word vector space

• Word2vec
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Basic neural network applied to NLP

• Bigram neural language model: predicts next word

• The input is encoded as one-hot

• The model will learn compressed, continuous representations of words (usually the 
matrix of weights between the input and hidden layers)
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Word vectors

• We call the vectors in the matrix between the input and hidden layer 
word vectors (also known as word embeddings)

• Each word is associated with a real valued vector in N-dimensional 
space (usually N = 50 – 1000)

• The word vectors have similar properties to word classes (similar 
words have similar vector representations)
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Word vectors

• These word vectors can be subsequently used as features in many 
NLP tasks (Collobert et al, 2011)

• As word vectors can be trained on huge text datasets, they provide 
generalization for systems trained with limited amount of supervised 
data
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Word vectors

• Many neural architectures were proposed for training the word 
vectors, usually using several hidden layers

• We need some way how to compare word vectors trained using 
different architectures
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Word vectors – linguistic regularities

• Recently, it was shown that word vectors capture many linguistic properties (gender, 
tense, plurality, even semantic concepts like “capital city of”)

• We can do nearest neighbor search around result of vector operation 
“king – man + woman” and obtain “queen”

Linguistic regularities in continuous space word representations (Mikolov et al, 2013)
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Word vectors – datasets for evaluation

Word-based dataset, almost 20K questions, focuses on both syntax and 
semantics:

• Athens:Greece Oslo: ___

• Angola:kwanza Iran: ___

• brother:sister grandson: ___

• possibly:impossibly ethical: ___

• walking:walked swimming: ___

Efficient estimation of word representations in vector space (Mikolov et al, 2013)
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Word vectors – datasets for evaluation

Phrase-based dataset, focuses on semantics:

• New York:New York Times   Baltimore: ___

• Boston:Boston Bruins      Montreal: ___

• Detroit:Detroit Pistons   Toronto: ___

• Austria:Austrian Airlines Spain: ___

• Steve Ballmer:Microsoft Larry Page: ___

Distributed Representations of Words and Phrases and their Compositionality (Mikolov et al, 2013)
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Word vectors – various architectures

• Neural net based word vectors were traditionally trained as part of neural network 
language model (Bengio et al, 2003)

• This models consists of input layer, projection layer, hidden layer and output layer
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Word vectors – various architectures

• We can extend the bigram NNLM for training the word vectors by 
adding more context without adding the hidden layer!
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Word vectors – various architectures

• The ‘continuous bag-of-words model’ (CBOW)
adds inputs from words within short window
to predict the current word

• The weights for different positions are shared

• Computationally much more efficient than
n-gram NNLM of (Bengio, 2003)

• The hidden layer is just linear
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Word vectors – various architectures

• Predict surrounding words using the
current word

• This architectures is called ‘skip-gram NNLM’

• If both are trained for sufficient number
of epochs, their performance is similar
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Word vectors - training

• Stochastic gradient descent + backpropagation

• Efficient solution to very large softmax – size equal to vocabulary size, 
can easily be in order of millions (too many outputs to evaluate):

1. Hierarchical softmax

2. Negative sampling
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Word vectors – sub-sampling

• It is useful to sub-sample the frequent words (such as ‘the’, ‘is’, ‘a’, …) 
during training

• Improves speed and even accuracy for some tasks
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Word vectors – comparison of performance
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• Google 20K questions dataset (word based, both syntax and semantics)

• Almost all models are trained on different datasets
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Word vectors – scaling up

• The choice of training corpus is usually more important than the 
choice of the technique itself

• The crucial component of any successful model thus should be low 
computational complexity

• Optimized code for computing the CBOW and skip-gram models has 
been published as word2vec project: 
https://code.google.com/p/word2vec/
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Word vectors – nearest neighbors

• More training data helps the quality a lot!
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Word vectors – more examples
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Word vectors – visualization using PCA
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Distributed word representations: summary

• Simple models seem to be sufficient: no need for every neural net to 
be deep

• Large text corpora are crucial for good performance

• Adding supervised objective turns word2vec into very fast and 
scalable text classifier (‘fastText’):
• Often more accurate than deep learning-based classifiers, and 100 000+ times 

faster to train on large datasets
• https://github.com/facebookresearch/fastText
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Recurrent Networks and Beyond

• Recent success of recurrent networks

• Explore limitations of recurrent networks

• Discuss what needs to be done to build machines that can 
understand language
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Brief History of Recurrent Nets – 80’s & 90’s

• Recurrent network architectures were very popular in the 80’s and 
early 90’s (Elman, Jordan, Mozer, Hopfield, Parallel Distributed 
Processing group, …)

• The main idea is very attractive: to re-use parameters and 
computation (usually over time)
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Simple RNN Architecture

• Input layer, hidden layer with recurrent
connections, and the output layer

• In theory, the hidden layer can learn
to represent unlimited memory

• Also called Elman network
(Finding structure in time, Elman 1990)

Neural Networks for NLP, Tomas Mikolov 49



Brief History of Recurrent Nets – 90’s - 2010

• After the initial excitement, recurrent nets vanished from the 
mainstream research

• Despite being theoretically powerful models, RNNs were mostly 
considered as unstable to be trained

• Some success was achieved at IDSIA with the Long Short Term 
Memory RNN architecture, but this model was too complex for others 
to reproduce easily
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Brief History of Recurrent Nets – 2010 - today

• In 2010, it was shown that RNNs can significantly improve state-of-the-
art in language modeling, machine translation, data compression and 
speech recognition (including strong commercial speech recognizer from 
IBM)

• RNNLM toolkit was published to allow researchers to reproduce the 
results and extend the techniques (used at Microsoft Research, Google, 
IBM, Facebook, Yandex, …)

• The key novel trick in RNNLM was trivial: to clip gradients to prevent 
instability of training
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Brief History of RNNLMs – 2010 - today

• 21% - 24% reduction of WER on Wall Street Journal setup
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Brief History of RNNLMs – 2010 - today

• Improvement from RNNLM over n-gram increases with more data!
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Brief History of RNNLMs – 2010 - today

• Breakthrough result in 2011: 11% WER reduction over large system from IBM

• Ensemble of big RNNLM models trained on a lot of data
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Brief History of RNNLMs – 2010 - today

• RNNs became much more accessible through open-source 
implementations in general ML toolkits:
• Theano

• Torch

• TensorFlow

• …

• Training on GPUs allowed further scaling up (billions of words, 
thousands of hidden neurons)
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Recurrent Nets Today

• Widely applied:
• ASR (both acoustic and language models)
• MT (language & translation & alignment models, joint models)
• Many NLP applications
• Video modeling, handwriting recognition, user intent prediction, …

• Downside: for many problems RNNs are too powerful, models are 
becoming unnecessarily complex

• Often, complex RNN architectures are preferred because of wrong reasons 
(easier to get a paper published and attract attention)
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Beyond Deep Learning

• Going beyond: what RNNs and deep networks cannot model 
efficiently?

• Surprisingly simple patterns! For example, memorization of
variable-length sequence of symbols
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Beyond Deep Learning: Algorithmic Patterns

• Many complex patterns have short, finite description length in natural 
language (or in any Turing-complete computational system)

• We call such patterns Algorithmic patterns

• Examples of algorithmic patterns: 𝑎𝑛𝑏𝑛, sequence memorization, 
addition of numbers learned from examples

• These patterns often cannot be learned with standard deep learning 
techniques
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Beyond Deep Learning: Algorithmic Patterns

• Among the myriad of complex tasks that are currently not solvable, 
which ones should we focus on?

• We need to set ambitious end goal, and define a roadmap how to 
achieve it step-by-step
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A Roadmap towards
Machine Intelligence
Tomas Mikolov, Armand Joulin and Marco Baroni



Ultimate Goal for Communication-based AI

Can do almost anything:

• Machine that helps students to understand homeworks

• Help researchers to find relevant information

• Write programs

• Help scientists in tasks that are currently too demanding (would 
require hundreds of years of work to solve)
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The Roadmap

• We describe a minimal set of components we think the intelligent 
machine will consist of

• Then, an approach to construct the machine

• And the requirements for the machine to be scalable
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Components of Intelligent machines

• Ability to communicate

• Motivation component

• Learning skills (further requires long-term memory), ie. ability to 
modify itself to adapt to new problems
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Components of Framework

To build and develop intelligent machines, we need:

• An environment that can teach the machine basic communication skills and 
learning strategies

• Communication channels

• Rewards

• Incremental structure
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The need for new tasks: simulated 
environment
• There is no existing dataset known to us that would allow to teach the 

machine communication skills

• Careful design of the tasks, including how quickly the complexity is 
growing, seems essential for success:
• If we add complexity too quickly, even correctly implemented intelligent 

machine can fail to learn

• By adding complexity too slowly, we may miss the final goals
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High-level description of the environment

Simulated environment:

• Learner

• Teacher

• Rewards

Scaling up:

• More complex tasks, less examples, less supervision

• Communication with real humans

• Real input signals (internet)
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Simulated environment - agents

• Environment: simple script-based reactive agent that produces signals 
for the learner, represents the world

• Learner: the intelligent machine which receives input signal, reward 
signal and produces output signal to maximize average incoming 
reward

• Teacher: specifies tasks for Learner, first based on scripts, later to be 
replaced by human users
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Simulated environment - communication

• Both Teacher and Environment write to Learner’s input channel

• Learner’s output channel influences its behavior in the Environment, 
and can be used for communication with the Teacher

• Rewards are also part of the IO channels
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Visualization for better understanding

• Example of input / output streams and visualization:
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How to scale up: fast learners

• It is essential to develop fast learner: we can easily build a machine 
today that will “solve” simple tasks in the simulated world using a 
myriad of trials, but this will not scale to complex problems

• In general, showing the Learner new type of behavior and guiding it 
through few tasks should be enough for it to generalize to similar 
tasks later

• There should be less and less need for direct supervision through 
rewards
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How to scale up: adding humans

• Learner capable of fast learning can start communicating with human 
experts (us) who will teach it novel behavior

• Later, a pre-trained Learner with basic communication skills can be 
used by human non-experts
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How to scale up: adding real world

• Learner can gain access to internet through its IO channels

• This can be done by teaching the Learner how to form a query in its 
output stream
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The need for new techniques

Certain trivial patterns are nowadays hard to learn:

• 𝑎𝑛𝑏𝑛 context free language is out-of-scope of standard RNNs

• Sequence memorization breaks LSTM RNNs

• We show this in a recent paper Inferring Algorithmic Patterns with 
Stack-Augmented Recurrent Nets
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Scalability

To hope the machine can scale to more complex problems, we need:

• Long-term memory

• (Turing-) Complete and efficient computational model

• Incremental, compositional learning

• Fast learning from small number of examples

• Decreasing amount of supervision through rewards

• Further discussed in: A Roadmap towards Machine Intelligence
http://arxiv.org/abs/1511.08130
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Some steps forward: Stack RNNs (Joulin & 
Mikolov, 2015)
• Simple RNN extended with a long term memory module that the 

neural net learns to control

• The idea itself is very old (from 80’s – 90’s)

• Our version is very simple and learns patterns with complexity far 
exceeding what was shown before (though still very toyish): much 
less supervision, scales to more complex tasks
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• Learns algorithms from examples

• Add structured memory to RNN:
• Trainable [read/write]

• Unbounded

• Actions: PUSH / POP / NO-OP

• Examples of memory structures: 
stacks, lists, queues, tapes, grids, 
… 

Stack RNN
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Algorithmic Patterns

• Examples of simple algorithmic patterns generated by short programs 
(grammars)

• The goal is to learn these patterns unsupervisedly just by observing the 
example sequences

Neural Networks for NLP, Tomas Mikolov 77



Algorithmic Patterns - Counting

• Performance on simple counting tasks

• RNN with sigmoidal activation function cannot count

• Stack-RNN and LSTM can count
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Algorithmic Patterns - Sequences 

• Sequence memorization and binary addition are out-of-scope of 
LSTM

• Expandable memory of stacks allows to learn the solution

Neural Networks for NLP, Tomas Mikolov 79



Binary Addition

• No supervision in training, just prediction
• Learns to: store digits, when to produce output, carry 
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Stack RNNs: summary

The good:

• Turing-complete model of computation (with >=2 stacks)

• Learns some algorithmic patterns

• Has long term memory

• Simple model that works for some problems that break RNNs and LSTMs

• Reproducible: https://github.com/facebook/Stack-RNN

The bad:

• The long term memory is used only to store partial computation (ie. learned skills are not 
stored there yet)

• Does not seem to be a good model for incremental learning

• Stacks do not seem to be a very general choice for the topology of the memory
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Conclusion

To achieve true artificial intelligence, we need:

• AI-complete goal

• New set of tasks

• Develop new techniques

• Motivate more people to address these problems
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