Neural Networks for Natural
Language Processing

Tomas Mikolov, Facebook
Brno University of Technology, 2017

Introduction

* Text processing is the core business of internet companies today (Google,
Facebook, Yahoo, ...)

 Machine learning and natural language processing techniques are applied
to big datasets to improve many tasks:
e search, ranking
e spam detection
* ads recommendation
* email categorization
* machine translation
* speech recognition
e ...and many others

Overview

Artificial neural networks are applied to many language problemes:
e Unsupervised learning of word representations: word2vec

e Supervised text classification: fastText

* Language modeling: RNNLM

Beyond artificial neural networks:

* Learning of complex patterns

* Incremental learning

* Virtual environments for building Al

Basic machine learning applied to NLP

* N-grams
* Bag-of-words representations

 Word classes

* Logistic regression

* Neural networks can extend (and improve) the above techniques and
representations

N-grams
e Standard approach to language modeling

e Task: compute probability of a sentence W

P(W) = l_[P(Wi|W1 - Wi—1)

* Often simplified to trigrams:

P(W) = HP(WdWi—z - Wi_1)

* For a good model: P(“this is a sentence”) > P(“sentence a is this”) > P(“dsfdsgdfgdasda”)

N-grams: example

P("this is a sentence") = P(this) X P(is|this) X P(a|this,is) X P(sentencelis, a)

* The probabilities are estimated from counts using big text datasets:

C(this is a)

P(althis,is) = C(this is)

* Smoothing is used to redistribute probability to unseen events (this avoids
zero probabilities)

A Bit of Progress in Language Modeling (Goodman, 2001)

One-hot representations

* Simple way how to encode discrete concepts, such as words

Example:

vocabulary = (Monday, Tuesday, 1s, a, today)
Monday = [1 0 0 O 0]

Tuesday = [0 1 0 O O]

1s = [0 0O 1 0 O]

a = [0 0 0 1 O]

today = [0 0 0 O 1]

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)

Bag-of-words representations

e Sum of one-hot codes
* [gnores order of words

Example:

vocabulary = (Monday, Tuesday, 1s, a, today)
Monday Monday = [2 0 0 0 O]

today 1s a Monday = [1 0 1 1 1]

today 1s a Tuesday = [0 1 1 1 1.

1s a Monday today = [1 0 1 1 1]

Can be extended to bag-of-N-grams to capture local ordering of words

Word classes

* One of the most successful NLP concepts in practice

e Similar words should share parameter estimation, which leads to
generalization

* Example:
Class; = (yellow, green, blue, red)
Class, = (Italy, Germany, France, Spain)

e Usually, each vocabulary word is mapped to a single class (similar
words share the same class)

Word classes

* There are many ways how to compute the classes — usually, it is
assumed that similar words appear in similar contexts

* Instead of using just counts of words for classification / language
modeling tasks, we can use also counts of classes, which leads to
generalization (better performance on novel data)

Class-based n-gram models of natural language (Brown, 1992)

Basic machine learning overview

Main statistical tools for NLP:
* Count-based models: N-grams, bag-of-words

* Word classes

* Unsupervised dimensionality reduction: PCA

* Unsupervised clustering: K-means

* Supervised classification: logistic regression, SVMs

Quick intro to neural networks

* Motivation

e Architecture of neural networks: neurons, layers, synapses
* Activation function

e Objective function

* Training: stochastic gradient descent, backpropagation, learning rate,
regularization

* Intuitive explanation of “deep learning”

Neural networks in NLP: motivation

* The main motivation is to simply come up with more precise
techniques than using plain counting

* There is nothing that neural networks can do in NLP that the basic
techniques completely fail at

e But: the victory in competitions goes to the best, thus few percent
gain in accuracy counts!

Neuron (perceptron)

Neuron (perceptron)

/
Input synapses

Neuron (perceptron)

Input synapses

W: input weights

Neuron (perceptron)

Neuron with non-linear activation function

/

Input synapses

/ N\

/
=

W: input weights
W, Activation function: max(0, value)

Neuron (perceptron)

Neuron with non-linear activation function

/

J /

W: input weights
W, Activation function: max(0, value)

Input synapses
Output (axon)

/ N\

v

/
=

Neuron (perceptron)

Neuron with non-linear activation function

Input synapses /

D

W: input weights
W Activation function: max(0, value)
3
I: input signal

Output (axon)

v

Output = max(0,1 - W)

Neuron (perceptron)

* It should be noted that the perceptron model is quite different from
the biological neurons (those communicate by sending spike signals
at various frequencies)

* The learning in brains seems also quite different

e It would be better to think of artificial neural networks as non-linear
projections of data (and not as a model of brain)

Neural network layers

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Training: Backpropagation

* To train the network, we need to
compute gradient of the error

* The gradients are sent back using
the same weights that were used
in the forward pass

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Simplified graphical representation: [1]]

What training typically does not do

Choice of the hyper-parameters has to be done manually:

e Type of activation function

* Choice of architecture (how many hidden layers, their sizes)
* Learning rate, number of training epochs

* What features are presented at the input layer

* How to regularize

It may seem complicated at first, the best way to start is to re-use some
existing setup and try your own modifications.

Deep learning

* Deep model architecture is about having more computational steps
(hidden layers) in the model

* Deep learning aims to learn patterns that cannot be learned
efficiently with shallow models

* Example of function that is difficult to represent: parity function (N
bits at input, output is 1 if the number of active input bits is odd)
(Perceptrons, Minsky & Papert 1969)

Deep learning

 Whenever we try to learn complex function that is a composition of
simpler functions, it may be beneficial to use deep architecture

A 4
\ 4
A 4
A 4

INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 HIDDEN LAYER 3 OUTPUT LAYER

Deep learning

* Deep learning is still an open research problem

 Many deep models have been proposed that do not learn anything else
than a shallow (one hidden layer) model can learn: beware the hype!

* Not everything labeled “deep” is a successful example of deep learning

Distributed representations of words

* Vector representation of words computed using neural networks
* Linguistic regularities in the word vector space

e Word2vec

Basic neural network applied to NLP

CURRENT WORD HIDDEN LAYER NEXT WORD

e Bigram neural language model: predicts next word

* The input is encoded as one-hot

* The model will learn compressed, continuous representations of words (usually the
matrix of weights between the input and hidden layers)

Word vectors

* We call the vectors in the matrix between the input and hidden layer
word vectors (also known as word embeddings)

e Each word is associated with a real valued vector in N-dimensional
space (usually N =50 - 1000)

* The word vectors have similar properties to word classes (similar
words have similar vector representations)

Word vectors

* These word vectors can be subsequently used as features in many
NLP tasks (Collobert et al, 2011)

* As word vectors can be trained on huge text datasets, they provide
generalization for systems trained with limited amount of supervised
data

Word vectors

* Many neural architectures were proposed for training the word
vectors, usually using several hidden layers

* We need some way how to compare word vectors trained using
different architectures

Word vectors — linguistic regularities

* Recently, it was shown that word vectors capture many linguistic properties (gender,
tense, plurality, even semantic concepts like “capital city of”)

* We can do nearest neighbor search around result of vector operation
“king — man + woman” and obtain “queen”

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

Linguistic reqularities in continuous space word representations (Mikolov et al, 2013)

Word vectors — datasets for evaluation

Word-based dataset, almost 20K questions, focuses on both syntax and
semantics:

* Athens:Greece Oslo:
* Angola:kwanza ITran:
* brother:sister grandson:

* possibly:impossibly ethical:

*walking:walked swimming:

Efficient estimation of word representations in vector space (Mikolov et al, 2013)

Word vectors — datasets for evaluation

Phrase-based dataset, focuses on semantics:

* New York:New York Times Baltimore:
* Boston:RBRoston Brulns Montreal:
* Detroit:Detroit Pistons Toronto:

* Austria:Austrian Airlines Spailn:

* Steve Ballmer:Microsoft Larry Page:

Distributed Representations of Words and Phrases and their Compositionality (Mikolov et al, 2013)

Word vectors — various architectures

* Neural net based word vectors were traditionally trained as part of neural network
language model (Bengio et al, 2003)

* This models consists of input layer, projection layer, hidden layer and output layer

input projection hidden output

- w(t)
v w

w(t-3)

w(t-2)

Neural Networks for NLP, Tomas Mikolov

35

Word vectors — various architectures

CURRENT WORD HIDDEN LAYER NEXT WORD

* We can extend the bigram NNLM for training the word vectors by
adding more context without adding the hidden layer!

Word vectors — various architectures

Input projection output

* The ‘continuous bag-of-words model’ (CBOW)
adds inputs from words within short window w2 \

to predict the current word
SUM

* The weights for different positions are shared

w(t)

* Computationally much more efficient than
n-gram NNLM of (Bengio, 2003) wit+1

w(t-1)
(

)
* The hidden layer is just linear w(t+2)

Word vectors — various architectures

Input projection o_utput
* Predict surrounding words using the
current word

w(t-2)

w(t-1)

* This architectures is called ‘skip-gram NNLM’

) T—" < _

* If both are trained for sufficient number
of epochs, their performance is similar

w(t+1)

w(t+2)

Word vectors - training

 Stochastic gradient descent + backpropagation

* Efficient solution to very large softmax — size equal to vocabulary size,
can easily be in order of millions (too many outputs to evaluate):

1. Hierarchical softmax
2. Negative sampling

Word vectors — sub-sampling

) (.7 ())

* It is useful to sub-sample the frequent words (such as ‘the’, ‘is’, ‘a’, ...
during training

* Improves speed and even accuracy for some tasks

Word vectors — comparison of performance

Model Vector Training Training | Accuracy
Dimensionality | Words Time [%]
Collobert NNLM 50 660M 2 months 11
Turian NNLM 200 37M few weeks 2
Mnih NNLM 100 37M 7 days 9
Mikolov RNNLM 640 320M weeks 25
Huang NNLM 50 990M weeks 13
Skip-gram (hier.s.) 1000 6B hours 66
CBOW (negative) 300 1.5B minutes 72

* Google 20K questions dataset (word based, both syntax and semantics)

 Almost all models are trained on different datasets

Neural Networks for NLP, Tomas Mikolov

41

Word vectors — scaling up

* The choice of training corpus is usually more important than the
choice of the technique itself

* The crucial component of any successful model thus should be low
computational complexity

* Optimized code for computing the CBOW and skip-gram models has
been published as word2vec project:
https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/

Word vectors — nearest neighbors

Redmond Havel graffiti capitulate
conyers plauen cheesecake abdicate
Collobert NNLM lubbock dzerzhinsky gossip accede
keene osterreich dioramas rearm
McCarthy Jewell gunfire -
Turian NNLM Alston Arzu emotion -
Cousins Ovitz impunity -
Podhurst Pontiff anaesthetics Mavericks
Mnih NNLM Harlang Pinochet monkeys planning
Agarwal Rodionov Jews hesitated
Redmond Wash. Vaclav Havel spray paint capitulation
Skip-gram Redmond Washington president Vaclav Havel grafitti capitulated
(phrases) Microsoft Velvet Revolution taggers capitulating

* More training data helps the quality a lot!

Neural Networks for NLP, Tomas Mikolov

43

Word vectors — more examples

Montreal Canadiens - Montreal + Toronto

Expression Nearest token
Paris - France + ltaly Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android

Toronto Maple Leafs

Neural Networks for NLP, Tomas Mikolov

44

Word vectors — visualization using PCA

T
Chinax
*Beijing
B Bussia:
Japarx
B Moscow]
Turkey Ankara “Tokyo
Polandk
- Germany« .
France ANarsaw
w —»Berlin
- Italy< Paris =
H#Athens
Greece« "
| Spairx Rome 4
» Madrid
- Portugal sLisbon)
| 1 1 | | 1 |

Neural Networks for NLP, Tomas Mikolov

Distributed word representations: summary

* Simple models seem to be sufficient: no need for every neural net to
be deep

* Large text corpora are crucial for good performance

* Adding supervised objective turns word2vec into very fast and
scalable text classifier (‘fastText’):

* Often more accurate than deep learning-based classifiers, and 100 000+ times
faster to train on large datasets

* https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText

Recurrent Networks and Beyond

* Recent success of recurrent networks
* Explore limitations of recurrent networks

e Discuss what needs to be done to build machines that can
understand language

Brief History of Recurrent Nets —80’s & 90's

e Recurrent network architectures were very popular in the 80’s and
early 90’s (EIman, Jordan, Mozer, Hopfield, Parallel Distributed
Processing group, ...)

* The main idea is very attractive: to re-use parameters and
computation (usually over time)

Simple RNN Architecture

* Input layer, hidden layer with recurrent
connections, and the output layer

* In theory, the hidden layer can learn
to represent unlimited memory

* Also called Elman network
(Finding structure in time, Elman 1990)

s(t=-1)

Brief History of Recurrent Nets —90’s - 2010

e After the initial excitement, recurrent nets vanished from the
mainstream research

* Despite being theoretically powerful models, RNNs were mostly
considered as unstable to be trained

* Some success was achieved at IDSIA with the Long Short Term
Memory RNN architecture, but this model was too complex for others
to reproduce easily

Brief History of Recurrent Nets — 2010 - today

* In 2010, it was shown that RNNs can significantly improve state-of-the-
art in language modeling, machine translation, data compression and

speech recognition (including strong commercial speech recognizer from
IBM)

* RNNLM toolkit was published to allow researchers to reproduce the
results and extend the techniques (used at Microsoft Research, Google,
IBM, Facebook, Yandex, ...)

* The key novel trick in RNNLM was trivial: to clip gradients to prevent
instability of training

Brief History of RNNLMs — 2010 - today

Model Perplexity WER [%]
heldout | Eval 92 || Eval 92 | Eval 93

GT2 167 209 14.6 19.7
GT3 105 147 13.0 17.6
KN5 87 131 12.5 16.6
KNS5 (no count cutoffs) 80 122 12.0 16.6
RNNME-0 90 129 12.4 17.3
RNNME-10 81 116 11.9 16.3
RNNME-80 70 100 10.4 14.9
RNNME-160 65 95 10.2 14.5
RNNME-320 62 93 9.8 14.2
RNNME-480 59 90 10.2 13.7
RNNME-640 59 89 9.6 14.4
combination of RNNME models - - 9.24 13.23
+ unsupervised adaptation - - 9.15 13.11

* 21% - 24% reduction of WER on Wall Street Journal setup

Neural Networks for NLP, Tomas Mikolov

Brief History of RNNLMs — 2010 - today

Lo ; *— KN5

o
o)
!

c o
E-S (®)]
T T

o
(N
T T

NN N
»A O ™
T T T

Entropy per word on the WSJ test data
o

~
(N
T

7
10° 10° 10’ 10°
Training tokens

* Improvement from RNNLM over n-gram increases with more data!

Neural Networks for NLP, Tomas Mikolov

53

Brief History of RNNLMs — 2010 - today

14.5 :
.|] —k— RNN+KN4 .
| — 1 — RNNME _
- —()— - RNNME+KN4 |
— 135 e
X
©
>
c 13
=}
o
LU
= 12.5
12

1.5 L
1 2 3
10 10 10

Hidden layer size

* Breakthrough resultin 2011: 11% WER reduction over large system from IBM
* Ensemble of big RNNLM models trained on a lot of data

Neural Networks for NLP, Tomas Mikolov

54

Brief History of RNNLMs — 2010 - today

* RNNs became much more accessible through open-source
implementations in general ML toolkits:
* Theano
e Torch
* TensorFlow

* Training on GPUs allowed further scaling up (billions of words,
thousands of hidden neurons)

Recurrent Nets Today

* Widely applied:
e ASR (both acoustic and language models)

 MT (language & translation & alignment models, joint models)
* Many NLP applications

* Video modeling, handwriting recognition, user intent prediction, ...

* Downside: for many problems RNNs are too powerful, models are
becoming unnecessarily complex

e Often, complex RNN architectures are preferred because of wrong reasons
(easier to get a paper published and attract attention)

Beyond Deep Learning

* Going beyond: what RNNs and deep networks cannot model
efficiently?

 Surprisingly simple patterns! For example, memorization of
variable-length sequence of symbols

Beyond Deep Learning: Algorithmic Patterns

* Many complex patterns have short, finite description length in natural
language (or in any Turing-complete computational system)

* We call such patterns Algorithmic patterns

* Examples of algorithmic patterns: a™b™, sequence memorization,

addition of numbers learned from examples

* These patterns often cannot be learned with standard deep learning
techniques

Beyond Deep Learning: Algorithmic Patterns

* Among the myriad of complex tasks that are currently not solvable,
which ones should we focus on?

* We need to set ambitious end goal, and define a roadmap how to
achieve it step-by-step

A Roadmap towards
Machine Intelligence

Tomas Mikolov, Armand Joulin and Marco Baroni

Ultimate Goal for Communication-based Al

Can do almost anything:

* Machine that helps students to understand homeworks
* Help researchers to find relevant information

* Write programs

* Help scientists in tasks that are currently too demanding (would
require hundreds of years of work to solve)

The Roadmap

* We describe a minimal set of components we think the intelligent
machine will consist of

* Then, an approach to construct the machine

* And the requirements for the machine to be scalable

Components of Intelligent machines

* Ability to communicate
* Motivation component

 Learning skills (further requires long-term memory), ie. ability to
modify itself to adapt to new problems

Components of Framework

To build and develop intelligent machines, we need:

 An environment that can teach the machine basic communication skills and
learning strategies

e Communication channels
e Rewards

* Incremental structure

The need for new tasks: simulated
environment

* There is no existing dataset known to us that would allow to teach the
machine communication skills

e Careful design of the tasks, including how quickly the complexity is
growing, seems essential for success:

* |f we add complexity too quickly, even correctly implemented intelligent
machine can fail to learn

* By adding complexity too slowly, we may miss the final goals

High-level description of the environment

Simulated environment:
* Learner
* Teacher
* Rewards

Scaling up:

* More complex tasks, less examples, less supervision
* Communication with real humans

* Real input signals (internet)

Simulated environment - agents

* Environment: simple script-based reactive agent that produces signals
for the learner, represents the world

* Learner: the intelligent machine which receives input signal, reward
signal and produces output signal to maximize average incoming
reward

* Teacher: specifies tasks for Learner, first based on scripts, later to be
replaced by human users

Simulated environment - communication

* Both Teacher and Environment write to Learner’s input channel

e Learner’s output channel influences its behavior in the Environment,
and can be used for communication with the Teacher

 Rewards are also part of the 10 channels

Visualization for better understanding

* Example of input / output streams and visualization:

Input: QOutput: | Input: Output:

T: move and look. E: you moved.

@QE: [move. @E: I look.

E: there is an apple.
Bt

Neural Networks for NLP, Tomas Mikolov

69

How to scale up: fast learners

* It is essential to develop fast learner: we can easily build a machine
today that will “solve” simple tasks in the simulated world using a
myriad of trials, but this will not scale to complex problems

* In general, showing the Learner new type of behavior and guiding it
through few tasks should be enough for it to generalize to similar
tasks later

* There should be less and less need for direct supervision through
rewards

How to scale up: adding humans

* Learner capable of fast learning can start communicating with human
experts (us) who will teach it novel behavior

* Later, a pre-trained Learner with basic communication skills can be
used by human non-experts

How to scale up: adding real world

e Learner can gain access to internet through its 10 channels

* This can be done by teaching the Learner how to form a query in its
output stream

The need for new techniques

Certain trivial patterns are nowadays hard to learn:

* a"b™ context free language is out-of-scope of standard RNNs
e Sequence memorization breaks LSTM RNNs

* We show this in a recent paper Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets

Scalability

To hope the machine can scale to more complex problems, we need:
* Long-term memory

* (Turing-) Complete and efficient computational model

* Incremental, compositional learning

* Fast learning from small number of examples

* Decreasing amount of supervision through rewards

* Further discussed in: A Roadmap towards Machine Intelligence
http://arxiv.org/abs/1511.08130

Some steps forward: Stack RNNs (Joulin &
Mikolov, 2015)

e Simple RNN extended with a long term memory module that the
neural net learns to control

* The idea itself is very old (from 80’s — 90’s)

e Qur version is very simple and learns patterns with complexity far
exceeding what was shown before (though still very toyish): much
less supervision, scales to more complex tasks

Stack RNN

input hidden output
* Learns algorithms from examples
* Add structured memory to RNN: U
e Trainable [read/write] Xt >
* Unbounded
_ P
e Actions: PUSH / POP / NO-OP
st-1[0]
* Examples of memory structures: | su st

stacks, lists, queues, tapes, grids,
stack(t-1) stack(t)

Algorithmic Patterns

Sequence generator Example
{a™b" [n > 0} aabbaaabbbabaaaaabbbbb
{a™"b"c™ | n > 0} aaabbbecccabcaaaaabbbbbeecce
{a™b"c"d" | n > 0} aabbceddaaabbbecedddabed
{a™b*™ | n > 0} aabbbbaaabbbbbbabb
{a™b™ ™™ | ny,m > 0} aabcecaaabbceccecabee
ne |k, X -nXn, X »= | (k=2)12=212122=221211121=12111

* Examples of simple algorithmic patterns generated by short programs
(grammars)

* The goal is to learn these patterns unsupervisedly just by observing the
example sequences

Neural Networks for NLP, Tomas Mikolov

Algorithmic Patterns - Counting

mEthDd !,ITE- bﬂ {.Iﬂ hTL {-,Tl! -:'I-ﬂ bTL {?Tl d'ﬂ. H.Tl bETL afl- bﬂ’h Eﬂ -+ T
RNN 25% 23.3% 13.3% 23.3% 33.3%
LSTM 100% 100% 68.3% 75% 100%
List RNN 40+5 100% 33.3% 100% 100% 100%
Stack RNN 40+10 100% 100% 100% 100% 43.3%
Stack RNN 40+10 + rounding | 100% 100% 100% 100% 100%

* Performance on simple counting tasks
* RNN with sigmoidal activation function cannot count

e Stack-RNN and LSTM can count

Neural Networks for NLP, Tomas Mikolov

78

Algorithmic Patterns - Sequences

Memorization Binary addition
100 100 _
! X
80 \ 80 3}
. il
S 60 . I
g X S 4oldl
g 40 \ | S 40t
' —Stack RNN HL
20 \ =List RNN 200 Yy —Stack RNN
1 =«RNN [l A =« RNN
=11 ol Ny mLSTM
10 20 30 40 50 10 20 30 40 50

n n

* Sequence memorization and binary addition are out-of-scope of
LSTM

* Expandable memory of stacks allows to learn the solution

Neural Networks for NLP, Tomas Mikolov

Binary Addition

Inputs: . I 1 0 0 0 1 1 I +'1 1 1 0 = 0 1 1
Predictons: 0 0 . 0 1 0 1 0 1 1 1 1|1 1 1 0
Stack 1: ' O 1 1 0 Counter
Stack 2: . End of number 2
Stack 3: 0 0 0 0 1 0 Number 2
Stack 4: 1 0 0 O Length of number 2

Stack 5: ' O 000010000110Carry

1 0 0 01 1.0

Stack 6: Number 1
Stack 7: Junk
Stack 8: Junk
Stack 9: Junk
Stack 10: Junk

* No supervision in training, just prediction
* Learns to: store digits, when to produce output, carry

Neural Networks for NLP, Tomas Mikolov 80

Stack RNNs: summary

The good:

e Turing-complete model of computation (with >=2 stacks)

e Learns some algorithmic patterns

Has long term memory

Simple model that works for some problems that break RNNs and LSTMs
Reproducible: https://github.com/facebook/Stack-RNN

The bad:

* The long term memory is used only to store partial computation (ie. learned skills are not
stored there yet)

* Does not seem to be a good model for incremental learning
» Stacks do not seem to be a very general choice for the topology of the memory

https://github.com/facebook/Stack-RNN

Conclusion

To achieve true artificial intelligence, we need:
* Al-complete goal

* New set of tasks

* Develop new techniques

* Motivate more people to address these problems

